Profinite groups and boolean graphs
نویسندگان
چکیده
منابع مشابه
commuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولProfinite Groups
γ = c0 + c1p+ c2p + · · · = (. . . c3c2c1c0)p, with ci ∈ Z, 0 ≤ ci ≤ p− 1, called the digits of γ. This ring has a topology given by a restriction of the product topology—we will see this below. The ring Zp can be viewed as Z/pZ for an ‘infinitely high’ power n. This is a useful idea, for example, in the study of Diophantine equations: if such an equation has a solution in the integers, then it...
متن کاملCohomology of Profinite Groups
A directed set I is a partially ordered set such that for all i, j ∈ I there exists a k ∈ I such that k ≥ i and k ≥ j. An inverse system of groups is a collection of groups {Gi} indexed by a directed set I together with group homomorphisms πij : Gi −→ Gj whenever i ≥ j such that πii = idGi and πjk ◦ πij = πik. Let H be a group. We call a family of homomorphisms {ψi : H −→ Gi : i ∈ I} compatible...
متن کاملCohomology of Profinite Groups
The aim of this thesis is to study profinite groups of type FPn. These are groups G which admit a projective resolution P of Ẑ as a ẐJGK-module such that P0, . . . , Pn are finitely generated, so this property can be studied using the tools of profinite group cohomology. In studying profinite groups it is often useful to consider their cohomology groups with profinite coefficients, but pre-exis...
متن کاملInverse Limits and Profinite Groups
Standard examples of inverse limits arise from sequences of groups, with maps between them: for instance, if we have the sequence Gn = Z/pZ for n ≥ 0, with the natural quotient maps πn+1 : Gn+1 → Gn, the inverse limit consists of tuples (g0, g1, . . . ) ∈ ∏ n≥0Gn such that πn+1(gn+1) = gn for all n ≥ 0. This is a description of the p-adic integers Zp. It is clear that more generally if the Gn a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1978
ISSN: 0022-4049
DOI: 10.1016/0022-4049(78)90019-1